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Design of broadband RF pulses with polynomial-phase response
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Abstract

The achievable bandwidth of common linear-phase RF pulses is limited by the maximum feasible B1 amplitude of the MR
system. It has been shown previously, that this limitation can be circumvented by overlaying a quadratic phase in the frequency
domain, which spreads the power across the pulse duration. Quadratic-phase RF pulses are near optimal in terms of achieving
minimal B1max. In this work, it is demonstrated that further B1max reduction can be achieved by combining quadratic with higher-
order polynomial-phase functions. RF pulses with a phase response up to tenth order were designed using the Shinnar-Le Roux
transformation, yielding considerable increases in bandwidth and selectivity as compared to pure quadratic-phase pulses. These
benefits are studied for a range of pulse specifications and demonstrated experimentally. For B1max = 20 lT and a pulse duration
of 2.1 ms, it was possible to increase the bandwidth from 3.1 kHz for linear and 3.8 kHz for a quadratic to 9.9 kHz for a poly-
nomial-phase pulse.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Polynomial-phase pulses; Shinnar-Le Roux transformation; Broadband RF pulses; Very selective saturation
1. Introduction

Shaped radio-frequency (RF) pulses are ubiquitous in
all kinds of MR experiments. Their design is generally dif-
ficult due to the complex nature of the underlying spin
dynamics. For MRI purposes, the latter are usually
described by the Bloch equations, whose coupled differen-
tial equations are difficult to invert. One approach to the
RF pulse design problem is the inverse scattering transfor-
mation (IST) [1–3]. The most widely used way to design RF
pulses is the Shinnar-Le Roux (SLR) transformation [4],
which reversibly converts an RF pulse into two finite
impulse response (FIR) filters. The problem of inverting
the Bloch equations is hence reduced to FIR filter design,
1090-7807/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2007.02.004

* Corresponding author.
E-mail address: rolf.schulte@gmail.com (R.F. Schulte).

1 Present address: GE Global Research - Munich, Freisinger Landstr.
50, 85748 Garching, Germany.

2 Present address: Novartis Institutes for BioMedical Research, Inc.,
Discovery Technologies, 250 Massachusetts Avenue, Cambridge MA
02139, USA.
which is a highly advanced discipline in electrical
engineering.

RF pulses have to fulfil several, often contradicting
requirements. Besides high selectivity and short duration,
a common desire is a large bandwidth for reducing arte-
facts such as chemical-shift displacement or curved
slices. For regular linear-phase amplitude-modulated
pulses, the bandwidth is tightly limited by the maximal
allowed RF field strength (B1max) of the transmitting.
This limitation is related to the fact that linear-phase
pulses concentrate the applied RF power in a central
main lobe. The overall B1 of the pulse is scaled to this
maximum in order not to exceed the system limitation
although most of the time the necessary B1 is much
lower. This represents an inefficient usage of available
RF power. It is therefore desirable to design RF pulses
with more efficient use of B1 amplitude and hence inher-
ently broader bandwidths.

One way of achieving this is to overlay a quadratic phase
onto the frequency response of the RF pulses, hence yield-
ing frequency-modulated pulses. The central main lobe of
the RF amplitude is spread out over a longer period of
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the pulse, hence B1 efficiency of these pulses is increased.
The disadvantage of non-linear phase pulses, however, is
the inability of refocusing the phase by linear gradients.
Therefore, these pulses cannot function as general excita-
tion or refocusing pulses. Suitable applications are inver-
sion or saturation of magnetisation, such as required for
outer-volume suppression [5,6]. Non-linear-phase pulses
can also be used for 3D imaging, where the pulse phase
is resolved in through-slice direction [7]. Alternatively,
the frequency modulation can also be used for actual image
encoding [9,10].

It has been argued previously that pulses with an over-
laid quadratic phase are near-optimal in terms of minimal
B1max [5,11]. Ideal in terms of excitation profile and mini-
mal B1max would be a rectangular envelope in both
domains. A rectangular profile in the spectral domain rep-
resents a good excitation profile, and a rectangular profile
in the temporal domain exhibits the most uniform distribu-
tion of power across the pulse duration, which is conserved
according to Parseval’s theorem. Mathematically, the near-
optimality of the quadratic phase can be derived with an
asymptotic series expansion [12]. The envelope (i.e., abso-
lute value) of a function with an overlaid quadratic phase
is the same in both time and frequency domain, assuming
a smooth envelope and sufficient amount of quadratic
phase [11,12]. For practical quadratic-phase pulses [5,11],
both conditions are fulfilled to a large extent, but some-
what violated in detail. The first violation stems from the
fact that a rectangular function contains discontinuities
in the transition bands. The asymptotic series expansion
can nevertheless be applied to the continuous areas of the
function [12]. The second violation stems from the limit
on the amount of quadratic phase applicable [11]. There-
fore, quadratic-phase RF pulses are only near-optimal in
terms of minimal B1max, suggesting that further reduction
of B1max may be possible by deviating from a purely qua-
dratic-phase response.

The objective of this work was hence to investigate
how the quadratic-phase response can be modified in
order to spread out the overall RF power even more
effectively. To this end, the phase response is modelled
generally as a polynomial of finite order. The effects of
various monomial-phase responses are studied first. The
minimal B1max is then approached by two different forms
of non-linear optimisation, an exhaustive and a direct
search. The exhaustive search is a systematic combina-
tion of quadratic with a single even-order phase, iterating
through varying amounts of the two phase terms. The
main benefit of an exhaustive search is to safely find
the global optimum. However, it is highly time consum-
ing, hence permitting only two parameters at a time to
be optimised. The direct search algorithm allows more
phase terms to be optimised at the same time, however
there is no proof of reaching the global minimum. Using
the direct search approach, pulses with a combination of
2nd–10th-order phases were designed for various param-
eter settings.
2. Methods

The SLR transformation reversibly transforms an RF
pulse into two FIR filters, the ‘‘A’’ and ‘‘B’’ polynomials
[4]. In this work, the B polynomial is designed with the
complex Remez exchange algorithm [11,13,14], while the
A polynomial is subsequently generated with the Hilbert
transformation [4]. The complex Remez exchange algo-
rithm fits a FIR filter polynomial to an arbitrary response
function by minimising the Chebyshev (i.e., maximum)
error norm, hence yielding equi-ripple error functions.
The desired complex response function D is specified by

DðxÞ ¼ RðxÞeiuðxÞ; ð1Þ
where R(x) is the magnitude, u(x) the phase response and
x 2 [�p,p] the normalised offset frequency [11]. In the
scope of the present work, the phase function is modelled
as

uðxÞ ¼
X
k2K

kkx
k; ð2Þ

where K is the set of polynomial phase orders considered
and kk denotes the corresponding coefficients.

The target profile is a low-pass filter with its magnitude
response specified by

RðxÞ ¼
0 for jxjP xs

sin h
2

� �
for jxj 6 xp

�
; ð3Þ

where h is the desired flip angle. The pass and the stop band
frequencies xp and xs are related to the bandwidth by

BW ¼ xs þ xp ð4Þ
and the fractional transition width by

FTW ¼ xs � xp

BW
: ð5Þ

The fitting error is related to these parameters by an
empirical relationship [4] derived for equi-ripple FIR filters

D1 ¼ n � BW � FTW ¼ f ðd1; d2Þ; ð6Þ

where n is the number of samples (i.e., normalised time [11]).
D1 is also a function of the error amplitudes d1 and d2 in the
pass and stop bands, respectively [4]. This relationship was
derived for linear-phase filters. For the present study it was
hypothesised that it holds approximately for polynomial-
phase pulses as well. Hence, Eq. (6) was used throughout
to calculate n Æ BW Æ FTW from given error specifications.
The validity of this approach was then verified by checking
the actual resulting ripple amplitudes.

In the following and as introduced in Ref. [11], the tilde
symbol denotes physical units, which are related to the nor-
malised units from FIR filter design by

~T ¼ nD~t; ð7Þ
where ~T denotes the pulse duration and D~t the sample spac-
ing. The number of samples n is equivalent to the norma-
lised time. The physical RF amplitude is given by
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~B1 ¼
B1

cD~t
; ð8Þ

and the bandwidth by

~BW ¼ BW

D~t
; ð9Þ

leading to the time-bandwidth product

~T � ~BW ¼ n � BW: ð10Þ
The achievable bandwidth of RF pulses can be increased

by minimising the B1max of the pulse. The underlying rela-
tionship between B1max and the physical bandwidth ~BW
can be derived by equating D~t in Eqs. (8) and (9) and mul-
tiplying both sides with n

nB1 max ¼ ~B1 maxc
n � BW

~BW
: ð11Þ

With a fixed physical ~B1 max of the system, gyro-magnetic
ratio c and time-bandwidth product n Æ BW, Eq. (11) trans-
lates into the following anti-proportionality

~BW / 1

nB1 max

; ð12Þ

where B1max is the maximum pulse amplitude in normalised
units. Hence, the key dependence of bandwidth limits on
the feasible B1max is confirmed.

The optimisation problem is to find the phase polyno-
mial yielding the minimal B1max for a given set of parame-
ters. An RF pulse is typically specified by the flip angle h,
the time-bandwidth product n Æ BW and the fractional tran-
sition width FTW. Side-constraints are an acceptable error
d (=d1 = d2) of the response function and a sufficient num-
ber of samples n in order to fulfil the hard-pulse approxi-
mation inherent to the SLR approach [4].

The first step in exploring the phase polynomial was to
design RF pulses with monomial phases of up to tenth
order and investigate their B1max behaviour. Subsequently,
the minimal B1max was approached by an exhaustive
search. This kind of optimisation generally finds the global
optimum, however it is computationally demanding per-
mitting in our case only two phase terms to be optimised
simultaneously. Therefore, a quadratic phase was system-
atically combined with one other higher even-order phase
up to ten at a time (i.e., K = {2,4}; K = {2,6}; K = {2,8};
K = {2,10}). The minimum-B1max solution with an accept-
able error was identified within the resulting two-dimen-
sional parameter landscape.

Finally, a direct search method was implemented for
finding the optimal combination of more than two phase
terms. Direct search algorithms are preferable to gradi-
ent-descent methods, because the cost function is not suffi-
ciently smooth and its gradients cannot be calculated
analytically. The cost function for the direct search minimi-
sation was chosen as

j ¼ B2
1 max þ P 2

d; ð13Þ

where Pd is a penalty term given by
P d ¼
0 for d < d0

gðd� d0Þ for d P d0

�
; ð14Þ

with d (=d1 = d2) being the equi-ripple error of the FIR fil-
ter response, d0 the maximum tolerable error and g a scal-
ing factor for controlling convergence. The direct search is
repeated three times with each successive optimisation
being initialised by the previous one. The first two stages
use a pattern-search algorithm [15], initialised with the
amount of quadratic phase from the empirical limit (Eq.
19 in [11]) and zero for all other phase terms. The last opti-
misation stage applies a Nelder–Mead Simplex algorithm
[15]. The penalty factor g was increased during the three
stages (for n = 256, g was 0.05, 1, and 100).

All numerical procedures were implemented in MAT-
LAB V7.0 SP2 (R14) (The MathWorks, Natick, MA,
USA). The pattern search algorithm uses the MATLAB
function ‘‘patternsearch’’ in the ‘‘Genetic Algorithm and
Direct Search Toolbox’’, while the Nelder–Mead Simplex
method applies the function ‘‘fminsearch’’ from the ‘‘Opti-
misation Toolbox’’. The complex Remez exchange algo-
rithm uses the function ‘‘cfirpm’’ (formerly ‘‘cremez’’)
from the ‘‘Signal Processing Toolbox’’. MRI experiments
were performed on a Philips Achieva 3 T scanner equipped
with a transmit/receive head coil allowing for a
~B1 max ¼ 20 lT (Philips Medical Systems, Best, The
Netherlands).
3. Results and discussion

RF pulses with monomial phase functions are depicted
in Fig. 1. Odd-order phase functions (left) lead to purely
amplitude-modulated pulses, while even orders result in
frequency-modulated pulses. A third-order phase
(K = {3}) leads to an asymmetric pulse shape. Hence,
B1max is reduced by distorting the central main lobe to give
about equal positive and negative heights (Fig. 1) accord-
ing to empirical findings. The possible reduction, however,
is not more than roughly half the original height. It was
observed, that the B1max reduction achievable with odd-
order phases is limited by the fact that the energy of the
RF main-lobe is mainly distributed towards one side only.
Thus, it should be possible to further reduce B1max by
spreading the central main lobe symmetrically, which can
be achieved with even-order phases (Fig. 1, right side).
The area of spreading out B1 is increasingly contained to
the central part of the RF pulse with an increased order.
Of all the monomial-phase functions, the quadratic phase
spreads the central main lobe over the widest area of the
pulse, hence supporting the B1max near-optimality argu-
ment [11]. Only a combination of quadratic with higher
even-order phase functions (K = {2,4,6,8,10}) distributes
the energy even further.

The B1max for a systematic combination of quadratic
with a single higher even-order phase (i.e., K = {2,4},
K = {2,6}, K = {2,8}, K = {2,10}) is shown in Fig. 2 for
pulses with the same target profile. With each combination
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Fig. 1. Various kinds of pulses all designed with different phase functions but the same target profile (h = 90�; n Æ BW = 130, D1 = 20; which leads with
n = 256 to BW = 0.508 and FTW = 0.154). The high time-bandwidth product of 130 (in radians) leads to a fairly large amount of side-lobes. On the left
side are RF pulses with single odd-order-phase functions, which lead to pure amplitude modulation. The (partially) self-refocused linear-phase pulse leaves
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even-order-phase functions (right side) yield complex FIR filter coefficients and hence phase-modulated pulses. The polynomial-phase pulse combines even
orders up to ten (K = {2,4,6,8,10}).
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it is possible to further reduce B1max as compared to a pure
quadratic phase (Table 1). The design parameters for these
polynomial-phase pulses seem to be subject to certain
restrictions, similar to pure quadratic-phase pulse design
[11]. In particular, this means that not all parameter spec-
ifications result in acceptable pulses with a low fitting error.
In this example the error limit was set to d < 0.00125.
Under this constraint, the minimal B1max was found for a
combination of 2nd and 8th order (k2 = 226,
k8 = �186 Æ 103) (Table 1).

A further reduction of B1max is possible by optimising a
combination of more higher-order polynomial-phase terms
with the direct search method (Table 1). Various polyno-
mial schemes (K) were considered in order to investigate
the underlying relations. Higher even-order phase terms
(K = {2, 4,6,8,10}) were compared to all higher-order
phase terms up to ten (K = {1,2,3, . . ., 10}) in order to fur-
ther support the argument that odd orders are not useful
for reducing B1max. Although the optimisation indeed
yielded contributions of odd orders as well, the resulting
B1max was larger with odd orders included. Therefore, only
combinations of even-order phase terms are considered in
the following investigations.

The influence of the selection of the various phase terms
on the RF pulses were investigated by optimising polyno-
mial-phase functions (K = {2, 4,6,8,10}) with various fit-
ting errors (d = 0.032, 0.0056, 0.00125 and 0.00032),
reflected by empirical performance measures of D1 = 10,
15, 20 and 25, respectively. Time-bandwidth products
n Æ BW ranged from 30–500 in steps of 5 (in radians), result-
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Fig. 2. Maps of B1max (colour scale) for different amounts of 2nd (k2; x-axis) and higher (4th, 6th, 8th, and 10th) order phase (kk; y-axis) for pulses with the
same target profile as in Fig. 1. The dashed white line exhibits pure quadratic phase. Due to symmetry, only positive k2 are shown. The blue outer region
with excessive fitting errors (d > 0.05) is excluded because of meaningless results. The minimal B1max with an acceptable error (d 6 0.00125) is marked with
a white cross for each combination and listed in Table 1. Note that the x (k2) and y (kk) axes have different scales. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this paper.)

Table 1
Different reductions of B1max relative to the linear-phase design (n Æ BW = 130, D1 = 20; same as in Figs. 1 and 2)

Optimisation Phase B1max Rel. to linear (%) ~T ½ms� ~BW½kHz�
No Linear 0.1402 100 6.7 3.1
Empirical [11] 2nd 0.0594 42.4 2.8 7.3
Exhaustive 2nd + 4th 0.0527 37.6 2.5 8.2

2nd + 6th 0.0485 34.6 2.3 8.9
2nd + 8th 0.0468 33.4 2.2 9.2
2nd + 10th 0.0484 34.5 2.3 8.9

Direct Combination 0.0436 31.1 2.1 9.9

B1max is given in normalised units (Eq. 8). The physical time ~T and bandwidth ~BW are for a maximal RF field strength of ~B1 max ¼ 20 lT. The best
combination found with the exhaustive search method for pairs of phase orders is K = {2,8}. This minimum can be further reduced with the direct search
method when using a polynomial combination of phases (K = {2,4,6,8,10}).
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ing in fractional-transition widths according to
FTW = D1/(n Æ BW) (Eq. (6)). The resulting RF pulses
are then scaled to ~B1 max ¼ 20 lT, hence resulting in differ-
ent pulse durations ~T and physical bandwidths ~BW. The
relationship between ~T and ~BW for polynomial as well
as for quadratic and linear-phase pulses with the same
parameter specifications is depicted in Fig. 3. The optimi-
sation scheme did not always converge, yet it found sev-
eral suitable minima for a range of time-bandwidth
products. As Fig. 3 suggests, the successfully optimised
pulses are grouped approximately along a straight line,
reflecting a linear increase in bandwidth as a function
of the pulse duration. To indicate this heuristic relation-
ship, the favourable pulses are marked by circles and fit-
ted by linear regression. Each pulse was considered
favourable if it achieved a higher bandwidth than any
previous pulse with a lower time-bandwidth product.
These results show a considerably increased bandwidth
for the polynomial-phase functions. This advantage is
especially pronounced for pulses with low fitting errors
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(i.e., high D1), while at D1 = 10 the regression lines of
quadratic and polynomial phase are approximately the
same. The error in the FIR filter response is generally
not considerably increased, as indicated in Fig. 4. This
supports the assumption made in Eq. (6), that the empir-
ically derived performance measure D1 is also valid for
polynomial-phase pulses.

Linear-phase pulses (blue in Fig. 3) exhibit always the
same bandwidth, while the selectivity improves with a
higher time-bandwidth product (decreasing FTW in Eq.
(6)). Both quadratic (red in Fig. 3) and polynomial (green
in Fig. 3) phase pulses lead to an approximately linear
increase in bandwidth as a function of pulse duration along
with further enhanced selectivity. Polynomial-phase func-
tions have basically two advantages over quadratic ones:
the gain in bandwidth starts earlier and the slope of the
regression line is steeper throughout. The gain in band-
width is especially considerable for shorter pulse durations,
which is crucial for good outer-volume suppression. Broad
bandwidth comes along with high selectivity, which is
therefore also better for polynomial-phase pulses. Again,
this advantage is particularly pronounced for short pulse
durations.
Interesting to note is the nature of the polynomial-phase
modulation. While the quadratic-phase term is increased,
the higher-order term attenuates the phase modulation
close to the transition bands. The qualitative behaviour is
visible in the B1max maps (Fig. 2) as well as in the excitation
profile (Fig. 5). The attenuation is contained mainly near
the transition bands, where the optimality argument of
Papoulis [12] for quadratic phase is violated.

One of the main applications of polynomial-phase pulses
is outer-volume suppression. Important for a successful sat-
uration of magnetisation are short pulses with a broad
bandwidth, high selectivity and low errors in the remaining
magnetisation. A whole range of linear, quadratic and
polynomial-phase pulses, all with D1 = 20, was designed
and implemented into the scanner software for outer-
volume suppression. The parameters of the selected poly-
nomial-phase pulses are listed in Table 2. Pulses with a
maximum duration of 3 and 5 ms were selected and their
suppression profiles were measured in a water-oil phantom
and in the human brain (Fig. 6). The chemical-shift dis-
placement artefact is considerably reduced, while the selec-
tivity is enhanced for pulses with a polynomial-phase
response, as compared to both linear and quadratic phase.
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4. Conclusions and outlook

Polynomial-phase pulses achieve both very broad band-
widths and high selectivities. They are particularly benefi-
cial for short pulse durations and high performance D1
(i.e., low errors and small transition widths). For a typical
~B1 max ¼ 20 lT (whole-body 3 T scanner) and pulse dura-
tion of 2 ms, the bandwidth was increased from 3 kHz (lin-
ear-phase) to 10 kHz (polynomial-phase pulse). The
advantages seem to be related to the fact that the phase
variation is attenuated in the transition bands by the more
local, higher-order polynomial-phase terms.



Table 2
Pulse parameters for various favourable pulses selected from Fig. 3 for D1 = 20 and n = 256

n Æ BW B1max k02 k04 k06 k08 k010

30 0.0251 33.485 �26.498 �20.247 �24.582 �26.925
55 0.0295 21.097 �4.489 �11.472 3.048 �10.353
75 0.0347 17.652 6.354 4.153 �8.027 �6.029
100 0.0406 15.775 5.773 �5.808 �4.647 �5.506
130 0.0436 11.845 5.452 �2.440 �3.276 �4.541
170 0.0526 10.416 4.340 �2.251 �0.307 �3.454
240 0.0624 8.529 3.522 �1.435 1.130 �2.500

Note that both B1max and k0k depend on n. The amount of phase is given by kk ¼ signðk0kÞjk0kj
k.

Fig. 6. Various suppression profiles for maximum pulse durations of 3 and 5 ms. Profiles are measured in a water–oil phantom and in the human brain.
The gradient strength was scaled to the according bandwidth in order to excite always the same slice thickness. Due to the higher bandwidth and gradient
strength, the chemical-shift displacement can be considerably reduced. Note, that the B1 inhomogeneities commonly present on 3 T scanners lead to a
degradation of profiles, here especially pronounced in the oil section for the linear-phase pulse. The right hand side shows the cross-section through the
water section in the lower part of the phantom.
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Polynomial-phase pulses have great potential for outer-
volume suppression, particularly for whole-body scanners
with higher field strengths. Outer-volume suppression is
generally most effective when the time between the suppres-
sion pulses and the acquisition is short. This places tight
constraints on both RF pulse durations and gradient times.
Polynomial-phase pulses are particularly beneficial for
short pulse durations, hence they can considerably enhance
outer-volume suppression.
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